T Distribution Table - StatCalculators.com (2024)

T Table

Given below is the T Table, otherwise known as the Student’s T-table or T-distribution table. This T table contains both one-tailed T-distribution and two-tailed T-distribution, degrees of freedom up to 1000, and a confidence level up to 99.9%.

Use this T-Distribution Table to lookup T critical value for confidence level & degrees of freedom for one tail & two-tails.

T Distribution Table - StatCalculators.com (1)

Related Calculators

Student t-Value Calculator Effect Size (Cohen's d) for a Student t-Test Calculator p-Value Calculator for a Student t-Test T-Statistic and Degrees of Freedom Calculator

What Is a T-Distribution?

Otherwise known as the Student’s T-distribution, the T-distribution is a type of probability distribution, with its bell shape, that is similar to the normal distribution, though it has heavier tails. T distributions have fatter tails, therefore, a greater chance for extreme values than normal distributions.

What Does a T-Distribution Tell?

A parameter of the T-distribution called degrees of freedom determines tail heaviness. Higher values of the mentioned parameter make the T-distribution resemble a standard normal distribution with a mean of 0, and a standard deviation of 1. Smaller values of this parameter give heavier tails.

When utilizing the estimated standard deviation, a T-score is calculated as:

T = (m – M)/{d/sqrt(n)}, rather than making the normal distribution with mean 0 and standard deviation 1, the contrast between d and D makes the distribution a T-distribution with (n – 1) degrees of freedom.

How To Utilize The T-Table?

Further, we are going to learn how to read the T-Table and map critical values on it using examples, but first, we will require a few things or pre-requisites before we can do that.

The pre-requisites needed to use a T-table are as follows:

The number of tails:

Firstly, you need to know whether the T-test is one-tailed or two-tailed because we will use the respective one-tail or two-tail row to mark the alpha level. The alpha levels are listed at top of the table [0.50, 0.25, 0.20, 0.15…for the one-tail and 1.00, 0.50, 0.40, 0.30, etc. for the two-tails] and as you can see, they differ based on whether the T-test is one-tailed or two-tailed.

Find out Z Score Table here

Degrees of freedom:

The degrees of freedom [df] show the number of independent values that can differ in an analysis without breaking any constraints. The degrees of freedom will either be explicitly cited in the problem statement or if it is not explicitly cited, then all you have to do is subtract one from your sample size (n – 1), and the result you get will be your degrees of freedom.

Alpha level:

The significance level, otherwise known as the alpha level (α), is the probability of rejecting the null hypothesis when it is true. The common alpha (α) levels for the T-test are 0.01, 0.05 and 0.10

Once you have all three significance levels, you have to pick the respective column for one-tail or two-tail from the table and map the intersection of the values for the degrees of freedom [df] and the alpha (α) level.

Example Questions:

Example #1 – Let’s say we want to map a one-tailed t-test for a mean with an alpha level of 0.05. The total number of students involved in this study is 25. To what critical value t should be compared?

Solution – Firstly, we see that there are 25 students involved in this study. We have to subtract 1 from the sample size to get the degrees of freedom [df]. Therefore, df = n – 1 = 25 – 1 = 24.

Example #2 – For a study involving one population and a sample size of 18 (assuming you have a t-distribution), what row of the t-table will you use to find the right-tail – “greater than” – probability associated with the study results?

A sample size of 18 has n – 1 = 18 – 1 = 17 degrees of freedom when the study involves one population.

Solution – df = 17

Example #3 – For a study involving a paired design with a total of 44 observations, with the results assuming a t-distribution, in order to find the probability affiliated with the study results, what row of the table will you use?

22 pairs are in a matched-pairs design with 44 total observations. The degrees of freedom [df] is one less than the number of pairs: n – 1 = 22 – 1 = 21.

Solution: df = 21

Example #4 – A t-value of 2.35, from a t-distribution with 14 degrees of freedom, between which two values has an upper-tail – “greater than” – probability on the t-table?

Find the row with 14 degrees of freedom and look for 2.35 utilizing the T-table. However, this exact value doesn’t lie in this row, so look for the values on either side of it: 2.1448 and 2.6245. The upper-tail probabilities appear in the column headings; the column heading for 2.1448 is 0.025, and the column heading for 2.6245 is 0.010.

Therefore, the upper-tail probability for a T-value of 2.35 must lie between 0.025 and 0.010.

Solution: 0.025 and 0.010.

Check out, Critical Chi-square calculator her

T Distribution Table - StatCalculators.com (2024)

FAQs

How do you calculate the t-distribution table? ›

The Student t -distribution is the distribution of the t -statistic given by t=¯x−μs√n t = x ¯ − μ s n where ¯x is the sample mean, μ is the population mean, s is the sample standard deviation and n is the sample size.

What is the T table and Z table in statistics? ›

Normally, you use the t-table when the sample size is small (n<30) and the population standard deviation σ is unknown. Z-scores are based on your knowledge about the population's standard deviation and mean. T-scores are used when the conversion is made without knowledge of the population standard deviation and mean.

When to use T or Z distribution? ›

If the population standard deviation is known, use the z-distribution. If the population standard deviation is not known, use the t-distribution.

When to use t table? ›

You must use the t-distribution table when working problems when the population standard deviation (σ) is not known and the sample size is small (n<30). General Correct Rule: If σ is not known, then using t-distribution is correct. If σ is known, then using the normal distribution is correct.

What is the formula for the t-distribution? ›

If you draw a simple random sample of size n from a population that has an approximately a normal distribution with mean μ and unknown population standard deviation σ and calculate the t-score: t=¯¯¯x−μs√n t = x ¯ − μ s n is from its mean μ. For each sample size n, there is a different Student's t-distribution.

How do you calculate t-distribution by hand? ›

It is calculated by subtracting the population mean (mean of the second sample) from the sample mean (mean of the first sample) that is [ x̄ – μ] which is then divided by the standard deviation of means. It is initially divided by the square root of n, the number of units in that sample [ s ÷ √(n)].

How to calculate t statistic? ›

To calculate t-statistic:
  1. Determine the sample mean ( x̄ , x bar), which is the arithmetic mean of your data set.
  2. Find the population mean ( μ , mu).
  3. Compute the sample standard deviation ( s ) by taking the square root of the variance. ...
  4. Calculate the t-statistic as (x̄ - μ) / (s / √n) , where n denotes the sample size.
Jul 29, 2024

How to calculate t-score? ›

How do you calculate a T-score? A T-score is calculated using the formula 𝑇=10*𝑍+50, translating Z-scores into a 0-100 or 20-80 scale with 50 as the mean.

How is AZ table calculated? ›

It is a way to compare the results from a test to a “normal” population. If X is a random variable from a normal distribution with mean (μ) and standard deviation (σ), its Z-score may be calculated by subtracting mean from X and dividing the whole by standard deviation.

What is the rule for the t-distribution? ›

The t-distribution is used when data are approximately normally distributed, which means the data follow a bell shape but the population variance is unknown. The variance in a t-distribution is estimated based on the degrees of freedom of the data set (total number of observations minus 1).

What does the t-distribution tell us? ›

The t-distribution describes the standardized distances of sample means to the population mean when the population standard deviation is not known, and the observations come from a normally distributed population.

How to interpret the p-value? ›

A p-value measures the probability of obtaining the observed results, assuming that the null hypothesis is true. The lower the p-value, the greater the statistical significance of the observed difference. A p-value of 0.05 or lower is generally considered statistically significant.

What is the first step in using the T table? ›

What is the first step in using the t-Table? Choose the correct row for the degrees of freedom. Use the t-table to find the correct t-value for a sample size of 12 and a right tail area of 0.025. Use the t-table to find the correct t-value for a sample size of 18 and a left tail area of 0.05.

What is the critical value for 0.01 significance level? ›

Standard normal distribution, α = 0.01, critical z = 2.58.

What is the formula for calculating T? ›

The t-score formula is: t = x ― − μ S n , where x ― is the sample mean, μ is the population mean, S is the standard deviation of the sample, and n is the sample size. Remember to square root n in the formula.

How do you find the distribution table? ›

To make such a frequency distribution table, first, write the class intervals in one column. Next, tally the numbers in each category based on the number of times it appears. Finally, write the frequency in the final column. A frequency distribution table drawn above is called a grouped frequency distribution table.

How do you find the t test value in a table? ›

When using a two-sample t-test, use n 1 + n 2 − 2 . Look in the column on the left and find the row that has the correct number for the degrees of freedom. In that row, search for the t-value, or the two numbers that the t-value occurs between.

What is the formula for the standard distribution table? ›

z = (X – μ) / σ

where X is a normal random variable, μ is the mean of X, and σ is the standard deviation of X. You can also find the normal distribution formula here.

References

Top Articles
Latest Posts
Article information

Author: Sen. Emmett Berge

Last Updated:

Views: 6462

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Sen. Emmett Berge

Birthday: 1993-06-17

Address: 787 Elvis Divide, Port Brice, OH 24507-6802

Phone: +9779049645255

Job: Senior Healthcare Specialist

Hobby: Cycling, Model building, Kitesurfing, Origami, Lapidary, Dance, Basketball

Introduction: My name is Sen. Emmett Berge, I am a funny, vast, charming, courageous, enthusiastic, jolly, famous person who loves writing and wants to share my knowledge and understanding with you.